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Large-eddy simulation of a plane wake

By S. Ghosal AND M. Rogers I

1. Motivation and objectives

In a previous report (Ghosai et al., 1992, 1994) the theoretical development

leading to the dynamic localization model (DLM) for large-eddy simulation (LES)

was presented. The method has been successfully applied to isotropic turbulence

(Ghosal et al., 1992, 1993, 1994, Carati et al., 1994 - see also the report in this

volume), channel flow (Cabot, 1993 - see also the report in this volume) and the

flow over a backward-facing step (Akselvoll & Moin, 1993a & b). Here we apply

the model to the computation of the temporally developing plane wake. The two

main objectives of this project are:

(A) Use the model to perform an LES of a time developing plane wake and com-

pare the results with direct numerical simulation (DNS) data to see if important

statistical measures can be reliably predicted. Also, to provide a relative evaluation

of the several versions of the model in terms of predictive capability and cost.

(B) If the tests in (A) show that the model generates reliable predictions, then

use the LES to study various aspects of the physics of turbulent wakes and mixing

layers.

According to the notation introduced earlier (see the references above), we rec-

ognize four versions of DLM:

(1) Dynamic model (DM): Special case of the DLM applicable only to flows with

homogeneous directions.

(2) Dynamic localization model (constrained) [DLM(+)]: A limited version of the

more general DLM, explicitly prevents backscatter by enforcing a positivity require-

ment on the Smagorinsky coefficient.

(3) Dynamic localization model (k-equation) [DLM(k)]: Extended version of DLM

that incorporates backscatter by introducing a budget equation for the sub-grid

kinetic energy.

(4) Dynamic localization model (stochastic) [DLM(S)]: Alternate extension of DLM

that incorporates backscatter by a stochastic term.

Tests of the DM and DLM(+) will be presented in this report. The more elaborate

models DLM(k) and DLM(S) that incorporate backscatter have not yet been tested

for this flow. In the next section we briefly review the two versions of the model

tested. No derivations are presented here; the reader is referred to the appropriate

references (Ghosal et al., 1992, 1994, and references therein) for the underlying

theory.
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2. Accomplishments

2.1 Background

2.1.1 The dynamic model (DM)

In its present form, the dynamic model can be written in the following way. For

homogeneous turbulence the coefficient C is constant in space (but it may be time

dependent) and is given by

c(t)-
<mklrnk,) " (I)

Here Li&= uiuj - uiuj is the Leonard term and mij = A2[S]Sij - _2 ij, where

ui and Sij are the filtered velocity and strain rates and the 'hat' denotes the "test

filtering" operation:
P

](x) = J G (x, y) f(y)dy. (2)

The 'grid-!evel' filter-width is A (usually taken to be of the order of the grid spac-

ing) and A (A > A) is the 'test-level' filter-width. The angular brackets denote

averaging over the volume of the domain.

For flows that are not completely homogeneous but have one or two homogeneous

direction(s) the DM can still be applied provided one assumes that the "test filtering"

operation is performed only in the homogeneous direction(s). Such an assumption

can be justified if the grid in the inhomogeneous direction(s) is so fine that the flow is

fully resolved in that direction, but in general it is not strictly valid. If one considers

a flow (such as the plane wake considered in this report) that is homogeneous in

the x - z plane but inhomogeneous in y, then the DM can be written as

c(u,O=
(mklmkl)zz" (3)

where the angular brackets now denote averaging over the homogeneous x-z planes.

A serious problem with the DM is that it can be applied only to homogeneous

flows or (under additional assumptions) to flows with at least one homogeneous

direction. This deficiency is removed by the DLM described next.

_.1.2 The dynamic localization model: constrained [DLM(+)]

In DLM(+) one obtains C(x) as a function of position at each time-step by solving

an integral equation

C(x) = [f(x) + /_(x,y)C(y)dy]+

where the suffix "+" indicates the positive part and

l [ao(x)Lij(x)-_,j(x) f Lo(y)G(y,x)dy]f(") =

(4)

(5)
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and

/CA(X,y) + K:A(y, X) -- K s(x, y)
X:(x,y) =

K;A(X, y) = aij(x)/3/j(y)G(x, y)

(6)

(7)

f
/Cs(X, Y) J G(z, x)a(z, y) dz. (8)

In these expressions G(x, y) is the "test filter" a_j = -2_ 2 [S[Sij, flsj = -2 A2[S[Sij

and Li i is the Leonard term.

The principal weakness of DLM(+) (as well as the DM) is that the restriction

of C to only positive values is somewhat contrived because it does not account for

backscatter. However, unlike the DM, the DLM(+) is completely general and can

be applied to arbitrary inhomogeneous flows.

2.1.3 The problem of the temporally developing wake

In a temporally developing wake the flow is statistically homogeneous in the

streamwise (z) and spanwise (z) directions and inhomogeneous in the normal (y)

direction. The governing equations are the incompressible Navier-Stokes equations

with periodic boundary conditions in x and z. In the y-direction the domain is

infinite and the velocity field is assumed to asymptotically approach the free-stream

velocity, which can be taken as zero in a suitably chosen reference frame. This

system can be considered to be an approximation to the physically more interesting

spatially developing wake. If one imagines a 'box' being advected downstream

at the 'free-stream' velocity, then the motion of the fluid in the imaginary box

approximates a temporally developing wake. The integrated mass flux deficit

P = -/+-5 6U(y)dy (9)

is conserved in a temporally developing wake, as opposed to the momentum flux

deficit

= - + (10)

which is conserved for a spatially developing wake. Clearly, if the mean velocity

deficit _U is small compared to the free stream velocity Uo¢, then p. _ Uoop.

A suitable scale for the velocity is the initial centerplane velocity deficit _U0 :

-(t_U(O))t=o and a suitable length scale is then #/_Uo. The corresponding time

scale is #/(_Uo) 2. We will quote most of our results in these units.

2.2 Computational methods

The numerical method used is a spectral method in vorticity variables. Both the

velocity and vorticity are periodic in the x and z directions and can therefore be

expanded in a basis of trigonometric functions for these variables. The y-direction

is somewhat more difficult to deal with since the domain is infinite in y. One
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method is to choose a basis of functions that have an infinite support (such as

the Jacobi polynomials coupled with a mapping to the infinite interval) for the
y-direction (Spalart et al., 1991). However, here we use a trick that leads to a

simpler code. We take advantage of the fact that in a wake the vorticity field is

much more confined in the y direction than the velocity field. One then expands

the vorticity in a trigonometric series in y defined over (Ym_n, Ym,,x) with periodic

boundary conditions. This is permissible provided that the vorticity is narrowly

confined around y = 0 and effectively decays to zero at the boundaries Yrni, and

Ymax. The velocity field is not so confined and cannot be represented in terms

of these trigonometric functions. But once the vorticity field is determined, the

correct velocity field may be obtained by adding a potential "correction" to the

periodic velocity field associated with the vorticity field so as to match the boundary

conditions at y = +e¢. Further details of the computational method may be found

in Corral and Jimenez (1993). The method of solving the integral equation to

determine the coefficient C has been described elsewhere (Ghosal et al., 1992, 1994).

The test filter width in these computations was taken to be twice the grid-filter

width, _ = 2A, and a 'top-hat' filter was used with a Simpson's rule quadrature.

For initial conditions we take two realizations of 'turbulence over a flat plate'

from DNS data generated by Spalart (1988) and 'sandwich' them to produce a

wake. Physically this corresponds to a situation where two independent boundary

layers exist on either side of a rigid plate and the plate is instantaneously "dis-

solved" without disturbing the surrounding fluid. All the parameters in the LES

are chosen so as to correspond to the "unforced wake" case of Moser and Rogers
(1994) mentioned above.

The LES reported here was performed on a grid of size Nx = 64, Ny = 48, and

Nz = 16. Therefore, all DNS data must first be 'filtered' to the same resolution

as the LES. This is done by truncating the DNS data in Fourier space to the

same number of modes retained in the LES. This filtering procedure is applied to

the initial conditions as well as to all DNS data with which we wish to compare
our LES results. The 'filtered DNS' represents the theoretical best that can be

achieved by any LES. The LES with DM took about 11 minutes of CPU time. For

the DLM(+) the CPU time depended on the level of convergence required for the

solution of the integral equation. We measured the degree of convergence by the

rms error in satisfying the integral equation normalized by the maximum value of

(C)xz. When it was required that the error as defined above should not exceed

10 -4, the DLM(+) used about 18 minutes of CPU time. To test if this level of

convergence was adequate, the simulation was rerun with the convergence criterion

set at 10 -9 . There were no observable differences in any of the computed statistical

measures. For comparison, the high resolution DNS of Moser and Rogers of the

same flow over the same time interval cost about 200 CPU hours. All computations
were performed on a CRAY C90.

2.3 Results

The gross features of the wake are characterized by the maximum wake deficit

5Urn of the mean velocity profile and the 'half-width' b of the wake. The half-width
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FIGURE 2. The product of the wake-width and the maximum velocity deficit as a

function of time using DLM(+) --; DM - - -; No model ...... ; filtered DNS •

is defined here as the distance between the two points at which the mean velocity

deficit is half its maximum value. Fig. 1 shows b2 plotted as a function of the

time t for the LES, filtered DNS, and LES with the subgrid model turned off. The

prediction of the DM is closest to the filtered DNS. The width grows as b ,-_ v/t
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FIGURE 3. The mean wake velocity deficit in self-similar coordinates using
DLM(+) --; DM - - -; No model ...... ; filtered DNS •

in the self-similar region (t(6Uo)211_ _ 50- 100) as expected. Fig. 2 shows the

product b(6Um) as a function of t. In all cases this quantity exhibits a plateau

during the self-similar period. Note that the Reynolds number Re_ = b6U,,/v =
2000b 6U,,/I_ ._ 2000 in the self-similar period.

Fig. 3 shows the mean velocity profile plotted in self-similar coordinates _U. =

6U/6U,, and y. = y/b for t(_Uo)2/g _ 50- 100. In all cases very good self-similar

collapse is observed (even with the subgrid model turned off!). Thus, the mean
velocity profile is quite insensitive to the subgrid model.

Figs. 4 (A), (B), (C), and (D) show the second-order velocity statistics (u2),
(v2), (w2), and (uv) respectively. Here u, v, and w are the velocities in the x, y,

and z directions, respectively, with the mean velocity subtracted out. The angular
brackets denote averaging over z - z planes. In all cases it is observed that both the

DM and DLM(+) predict the second-order statistics very weU. The quality of the

predictions deteriorates significantly if the model is turned off (except for (uv)). The
better agreement for the (uv) profile is to be expected since it is directly related
to the mean velocity profile 6U(y) through the z-component of the momentum

equation and we have already seen that 6U(y) is insensitive to the subgrid model.

Figs. 5 (A), (B), (C), and (D) show the second-order vorticity statistics (w_), (w_),
(w:2), and (w=w_) respectively. Here w_, w_, and w: are the vorticities in the x, y,

and z directions, respectively, with the mean vortieity subtracted out. The angular
brackets denote averaging over x - z planes. The agreement of the DM as well as

the DLM(+) predictions with the filtered DNS is seen to be very good. When the



LES of a plane wake 133

E

A
¢'4

v

0.12

0.10 I

FIGURE 4A. The mean streamwise intensity of turbulence in self-similar coordi-

nates using DLM(+) +; DM --; No model ...... ; filtered DN$ •

0.12

v

0.10

0.08

0.06

0.04

0.02

0

-1.5

.'_::i.""-.."'.?.":: .... "":':;:..'_,..
•:, . .......... ......'It°....,...." ..

S_'_ii__o'*'¢,.::*-.. • ... .." .. .... .._,_

-1.0 -0.5 0 0.5 1.0 1.5

FIGURE 4B. The mean cross-stream intensity of turbulence in self-similar coordi-

nates using DLM(+) +; DM --; No model ...... ; filtered DNS •



134 S. Ghosal _ M. Rogers

0.12

A

v

0.10

0.08

0.06

0.04

0.02

0

FIGURE 4C. The mean spanwise intensity of turbulence in self-similar coordinates

using DLM(+) +; DM --; No model ...... ; filtered DNS •

v

0,04 -

0.02

0

-0.02

-0.04
-1.5 -l'.0 .0'.s _ oi_ 1:0 1.s

FIGURE 4D.

DIM(+) +; DM-

The mean turbulent stress uv in serf-similar coordinates using

; No model ...... ; filtered DNS •



LES of a plane wake 135

A

¢'_

v

0.025

0.020

0.015

x x

x x x_k x
,,_ x XxX|X x xxx

xXX3b,,zXx x x'r,.x.=_.J.,

x'-- _ 2-- xxf _x--_t

x_w,_" x Xxx x x x :eJlFx
r xK x x

x x mxxx x _i(x
x_x x x )k_

x x xX_

0.010 _

xx

o.oo 4 """ I

-1.5 -1.o -,_5 ; oT5 1.o 1.5

_/b

FIGURE 5A. The mean intensity of streamwise vorticity in self-similar coordinates

using DLM(+) +; DM --; No model x; filtered DNS •
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FIGURE 5C. The mean spanwise intensity of vorticity in self-similar coordinates
using DLM(+) +; DM --; No model ×; filtered DNS •
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model is turned off the agreement with the filtered DNS is seen to be very poor. The

magnitudes of the enstrophy components are about four times the corresponding
filtered DNS levels. Here one might ask if it is reasonable or useful to use an LES

to predict vorticity statistics since it is known that small scales not resolved by LES

are the primary contributors to enstrophy. Indeed, (w2,), (wy2), and (w,2) for the
filtered DNS are about a fifth of their levels in the unfiltered DNS. However, good

prediction of vorticity statistics is important because these statistics are a sensitive
measure of the scales close to the threshold of resolution of the LES. The fact that

even vorticity statistics are captured by the LES suggests that all of the resolved

scales and not just the lowest wavenumber modes are faithfully represented in the

simulation. Thus, we use vorticity statistics as a "quality indicator" of the LES

rather than as a quantity of practical importance to the user.

In Figs. 4 and 5 it is apparent that the self-similar collapse is not perfect but

that there is a systematic variation between the curves at different times in the

simulation, even when scaled in self-similar variables. This is the case not only for

the LES, but also for the filtered DNS. This is an artifact of the filtering procedure

itself and can be understood in the following way. The flow evolves self-similarly at

constant Reynolds number Reb = b(6Um)/v (see Fig. 2) in the self-similar region but

the length scales increase in time. Thus, as the flow evolves, the energy spectrum
shifts to the left without changing form. Since the grid size is held fixed, this

implies that more and more of the energy becomes 'resolved' as the spectrum shifts

to lower wavenumbers past f_ = 27r/A. Therefore the resolved part of the second-
order statistics increases with time. This is precisely what is observed in the filtered

DNS and LES data and is responsible for the systematic increasing trend during

the self-similar period.

In addition to obtaining quantitative predictions, one also hopes to gain some

qualitative understanding of the large-scale flow structures from an LES. Thus, it

is of interest to see if the model is able to generate structures that look realistic.

As an example a typical contour plot of the v-velocity is presented in Fig. 6 over an

x - y plane. It is seen that Fig. 6(C) (LES with model) bears an overall resemblance

to Fig. 6(B) (filtered DNS) in the sense that it has a similar number of 'eddies' of

approximately similar size and shape. However, Fig. 6(D) (LES without model)

looks qualitatively different from Fig. 6(B) in the sense that it has a profusion of

poorly resolved small-scale structures. A similar statement can be made about
the other flow variables. The times at which the contours are shown in Fig. 6

for the DNS and LES do not correspond exactly, but they are close, varying from

t(6Uo)2/# _ 62.4 to 66.3, and are in the developed region (see Fig. 1).

It may appear that even though the no-model case (Fig. 6(D)) has far too many
small-scale fluctuations compared to the filtered DNS (Fig. 6(B)), it does resemble

somewhat the full DNS of Fig. 6(A). That this is not the case becomes clear on

examination of the energy spectrum. Fig. 7 shows the one-dimensional spectrum

q2(k_) = y_)16(G, k,)L _ + [_(k_, kz)l _ + [_(k_, k_)l 2) (11)

kz

at the plane Y = 0 for the same fields whose v-contour plots are shown in Fig. 6.
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Here ' "' denotes Fourier-transform in the x - z plane. The filtered DNS is very

close to, but slightly below (on account of filtering in the g-direction), the full DNS,

up to the maximum kx represented in the LES. The LES matches the filtered DNS

closely. However, for the no-model case, energy piles up at the high wavenumbers

because of the lack of a dissipation mechanism, and this results in a 'flat' rather

than decaying energy spectrum. The small-scale fluctuations seen in Fig. 6(D)

are a manifestation of this unphysical 'pile-up' of energy and have no relation to

the true fine structure seen in the highly resolved DNS of Fig. 6(A). Indeed, it is

quite impossible to reproduce the fine structure of the DNS with the vastly reduced

number of modes in an LES, and the 'filtered' DNS is the ideal limit one can hope

to achieve.

In summary, mean velocity profiles plotted in self-similar coordinates are very in-

sensitive to the choice of subgrid models. The prediction of the self-similar growth of

the wake width is improved by the subgrid model, but the results with no model are

nevertheless tolerable. Second-order velocity and vorticity statistics are predicted

very well by both the DM and DLM(+), but the predictions of these statistics

without the model are very poor. The flow structures in the LES have a strong

visual resemblance to those of the corresponding filtered DNS, but this is not the

case if the LES is performed with no subgrid model. The LES represents a very

significant saving in CPU time over the corresponding DNS. The results presented

here suggest that LES can provide accurate predictions when information related

to small-scale structures is not required.
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3. Future plans

In generating the results presented in this report, the "test filter" was imple-

mented only in the x and z directions. This was done as a first step because filtering

only in the homogeneous directions is easiest to implement in the code. However,

there are some serious difficulties associated with this. In situations where the grid

spacings in all three directions are not the same, there is no unique way of defining
the "grid-filter width" A. Some possible choices are

(A) A = (A_AyA,)I/3

(B) A = (A_ + A_ + A_)'/2

(C) A=max [A_,A,,A,]

(D) A = (A,A,)'/2.

The choice (D) may be thought of as a natural modification of (A) when Ay <<

A,, A,. In this case (A) would give an unreasonably small length scale.

Now, if the filtering is done in all three directions, then _, = 2A,,/_y = 2Ay, and

/k z = 2A, so that all the possible choices (A), (B), (C), and (D) give the same value

for the filter-width ratio/_/A = 2. It is easily shown that only the combination CA 2

is computed in the dynamic model and that the grid and test filter-widths enter

only as the ratio _/A. Thus when the model is properly implemented with a 3D-

filter, it is unaffected by the choice of filter-width definition. In fact, any filter width

A = f(Az, A_, A,) where f is a homogeneous function (i.e. f(aA_, bAy,cA,) =

abcf(A,, Ay, A,)) will yield the same filter-width ratio. This is no longer true if

the filtering is only done in x - z planes as in the current simulations. In this case

hz = 2A_, £y = A_, and h, = 2A,, so that (C) and (D) give /k/A = 2. (A)

gives /k/A = 22/3, and (B) gives a result that depends on the aspect ratio of the

grid. In the simulations presented here we have chosen /_/A = 2, but the results

change significantly if an alternate value for this ratio is used. These results should

therefore be regarded as preliminary, and more careful tests using full 3D filtering
need to be done before they can be considered reliable.

We would like to test two other versions of the dynamic localization model viz.

DLM(k) and DLM(S). The first one accounts for backscatter by means of a budget

equation for the subgrid kinetic energy (Ghosal et hi., 1992, 1994) while the second

regards backscatter as a stochastic forcing. Apart from being able to represent

backscatter (which may or may not be a significant effect), the DLM(k) has the

additional advantage that it allows one to compute the full subgrid-stress tensor

instead of simply the deviatoric part. This makes it possible to determine the

resolved pressure, a quantity that cannot be determined if only the deviatoric part
of the stress is known.

Both DNS and experiments on plane wakes show a range of growth rates that

seem to be sensitive to initial conditions (Moser and Rogers, 1994). It has been

proposed that this could be due to the existence of non-unique self-similar states,

any one of which can be selected in a given realization depending on the initial

conditions (George, 1989). In order to investigate such possible dependence on

initial conditions, Moser and Rogers (1994) amplified the 2D components of the

initial velocity field in their simulation. It has been found that it is possible to
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significantly alter the growth rate by such "2D forcing". We would like to check if

LES is able to predict correctly the growth rates in such forced wakes. If it does,
then LES can be used as a research tool to test whether alternate self-similar states

are indeed sustained. This requires long-time simulations that are prohibitively
expensive using current DNS.

We would like to thank Dr. Parviz Moin for his critical comments on an earlier

version of this manuscript.
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